A framework for comparing query languages in their

ability to express boolean queries

Dimitri Surinx ' Jan Van den Bussche ! Dirk Van Gucht 2

IHasselt University 2Indiana University

44

UHASSELT |

A framework for comparing query languages in their ability to express boolean queries

Database instances

A database schema I is a finite nonempty set of relation names

An instance | over [assigns to each relation name R of arity k, a finite
k-ary relation /(R) over a fixed universe of data elements

The active domain adom(/) of / is the set of data elements present in /

/\ We only consider instances with a nonempty active domain

Example:

Airports:

id

name

BRU

BUD

1
2
3

AMS

Flights:
from | to
1 2
2 1
1 3
3 1

= {Airports,Flights}

adom(/) = {1,2,3,BRU, BUD, AMS}

A framework for comparing query languages in their ability to express boolean queries

Definition

A k-ary query over a database schema [is a function that maps instances
I over I to k-ary relations over adom(/)

/\ We require that queries are generic, i.e., Q(f(/)) = f(Q(/)) for any
permutation f of the universe

Examples:
@ Retrieve all city pairs that are two hops away from each other by plane

@ Retrieve all cities pairs that are connected by plane

A framework for comparing query languages in their ability to express boolean queries

Boolean queries

Not all questions for a database require relational output

e Often only interested in yes/no answers

Definition

A Boolean query is a function that maps instance / over I to true or false

Examples:
@ Are there two cities that are not within 4 hops of each other?
@ Is the flight graph connected?

o If there is a short flight between two cities, can we then travel
between the two cities by train?

A framework for comparing query languages in their ability to express boolean queries

Nonemptiness modality

Customary to express Boolean queries by testing nonemptiness of a query
from a certain query language F

— Q # 0 is true on an instance | if Q(/) # 0 and false if Q(I) =0

Example:

@ “Are there airports with the same name” is expressed by the
nonemptiness of the query

“retrieve the different airport pairs that share the same name”

@ “Are there two airports that are not connected in two hops” is
expressed by the nonemptiness of the query

“retrieve the airport pairs that are not connected in two hops”

A framework for comparing query languages in their ability to express boolean queries

Emptiness modality

Testing emptiness of expressions to express Boolean queries

— Q =0 is true on an instance [if Q(/) =0 and false if Q(I) # 0

Examples:

@ The constraint “No two airports should have the same name” is
expressed by the emptiness of

“gather the different airports with the same name”

@ More generally, the FD A — B on R(A, B) is expressed by the
emptiness of

(a, by, bz) — R(a, bl) VAN R(a, b2) A by 75 bo

A framework for comparing query languages in their ability to express boolean queries

Containment modality

Testing containment of one expression in another one to express Boolean
queries

— Q1 € @ is true on an instance | if Q1(/) C @Q(/) and false if

Qi) € (/)

Example:

@ “If there is a short flight between two cities by plane, can we then
travel the same segment by train?” is expressed by

“retrieve the city pairs connected by direct short flights”
C "“retrieve the city pairs connected by train”

@ Inclusion dependencies

/\ Gives us the ability to express a wide array of queries using weak
languages

A framework for comparing query languages in their ability to express boolean queries

Boolean query families

We refer to nonemptiness, emptiness and containment as the base
modalities

For any query language F we introduce three Boolean query families

family of Boolean queries expressible in the form with
F=0 qg=10 geF
F#0 q#0 ge F
FE @ C q,q €F

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:
© Compare the base modalities for fixed query languages F, e.g., F—?
vs. F70

@ Compare different query languages F1 and F> for fixed base
modalities, e.g., .7-"1g VS.]_-2g

© Compare different query Ianguages JF1 and F> for different base

modalities, e.g., J’-"lg VS.]-"gé

@ Close a Boolean query family B under certain Boolean connectives
and compare it to B, e.g., F/\< vs. F©

Note: these comparisons are uninteresting for powerful languages like FO

A framework for comparing query languages in their ability to express boolean queries

For fixed languages F we want to compare:

FOCE A FA L F
? ?

FE< C]::@ f:@ C F<

FH & FC FA & Fe

General results:

o We identify features that enable us to go from one modality to
another for fixed F

o We identify properties that counter this ability

Applications:
e CQs and UCQs
o Navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Crucial features

We identify several different query features that enable us to go from one
modality to another:

o Tests:
qi(l) if qa(1) # 0

0 otherwise

(qrif g2)(1) = {

@ k-ary Cylindrification:

adom(/)k if q(1) # 0
0 otherwise

(q)(1) = {
o k-ary Complementation:

g°(1) = adom(1)* — q(/)

A framework for comparing query languages in their ability to express boolean queries

Positive results

Let F be a family of queries.
Q@ FE< C F=V if F is closed under set difference (—).

@ F=9 C F#Y if there exists k such that F is closed under
o k-ary complementation, and
e k-ary cylindrification.

@ FH C FEif
e F contains a never-empty query p, and

o F is closed under tests, or F is closed under k-ary cylindrification for
some k.

Q@ F=" C FES if F contains the empty query

(2): Q@ =0 is equivalent to v, (Q)° # 0
(3): Q # 0 is equivalent to both p C (pif Q) and v«(p) C k(Q)

A framework for comparing query languages in their ability to express boolean queries

Negative results

Ideally, we would also like to prove that these query features are actually
necessary

/\ Cannot expect this is possible since F can be very pathological

Approach to solve this issue:

o Find general properties of F that prevent the sufficient conditions to
hold

— We propose monotonicity and additivity

A framework for comparing query languages in their ability to express boolean queries

Monotonicity

A query @ is monotone if for any / and J we have Q(/) C Q(/ U J)

— counters closure under complementation and set difference

Proposition

Let F be a family of monotone queries over a database schema I.
o If F*¥ contains a non-constant query, then F#0 ¢ F=0.

e If T contains two distinct relation names R and T of the same arity,
and the two queries R and T belong to F, then F< ¢ F=9.

e If R is a binary relation name in I and the two queries R o R and R
belong to F, then F< ¢ F=.

Follows from: F=9 is antimonotone, F7? is monotone and FS is neither
monotone nor antimonotone

A framework for comparing query languages in their ability to express boolean queries

A query Q is additive if for any two active domain disjoint instances /, J
we have Q(/UJ) = Q(/) U Q(J)

— counters closure under cylindrification and test

Proposition

Let F be a family of additive queries.
@ If F< contains a non-constant query, then F< ¢ F 70,

Q If F#? contains a non-constant query, then 7 ¢ F< and
Y@

A framework for comparing query languages in their ability to express boolean queries

For fixed languages F we want to compare:

FOCE A FA L F
? ?

FE< C F=0 F=0 C F<

FH & FC FA & Fe

Applications:
e CQs and UCQs
o Navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Application: CQs and UCQs

CQs are expressions of the form H(y) :==3x Ri A... AR,

UCQs are unions of conjunctive queries that have a matching output
schema

We have obtained the following:

CQS UCQS
cQ=" ucQ=*

CQ#@ UCQ#)

A framework for comparing query languages in their ability to express boolean queries

Application: CQs and UCQs

Nearly all comparisons follow from general results since:
@ Both languages are monotone

@ Both languages contain a never empty query, e.g, Ix : x = x
@ Both are closed under tests since

o (U; q1iifU; q2)) is equivalent to the expression |J; UJ; g2; A q1; # 0
where qi; is a fully quantified version of qy;

CQS UCQS
cQ=" ucQ=*

CQ#@ UCQ#)

A framework for comparing query languages in their ability to express boolean queries

Application: Navigational graph query languages

Restriction where I only contains binary relation names

— can view instances over [as graphs

Based on the Algebra of Binary Relations [Peirce, Schroder, Tarski

Basic features:

= {(m,m) | m € adom(G)}
= the edge relation G(R) (for ReT)

{(m n) [3p:(m,p) € e(G)A(p,n) € e2G)}

A framework for comparing query languages in their ability to express boolean queries

Nonbasic features

di(G) = {(m, n) | m,n € adom(G) A m # n}
all(G) = {(m,n) | m,n € adom(G)}
eH(G) = {(m,n) | (n,m) € e(G)}
e1Ne(G) =e(G)NeG)
e1 — &(G) = e1(G) — &(G)
m1(e)(G) ={(m,m) | 3n:(m,n) € e(G)} (provide tests)
m(e)(G) = {(m,m) | 3n: (n,m) € e(G)}
m1(e)(G) = {(m,m) | =3n: (m, n) € e(G)} (provide negative tests)
m2(e)(G) = {
(6) =

ages in their ability to express boolean queries

Fragments & Path Queries

A fragment is a set of features:
@ Contains both projections or none of them
@ Contains both coprojections or none of them
@ The most basic fragment is the semiring {(,id, U, o}

Let NVr(F) be the set of expressions built from relation names in I using
the features in the fragment F

= Map instances of [(graphs) to binary relations (path query)

Instead of Nr(F)7?, Nr(F)=" and Nr(F)< we write Fr7?, F-=% and Fr<

We will omit I when it is not important

A framework for comparing query languages in their ability to express boolean queries

Consider Hobbies(person,hname), Person(pname,age)

“Output the persons that share a hobby”
o (Hobbies o (Hobbies™1)) — id

“Output the persons that do not have any hobbies”

e 71(Hobbies) o 71 (Person)

A framework for comparing query languages in their ability to express boolean queries

Interdependencies between features

Some operators can be constructed with other operators:

all=diuid

di=all—id
eeNe=e—(e— &)
mi(e) = (eo e Hnid=(ecal)n

ma(e) = (loe)nid=(alloe)n
ﬁl(e) =i fﬂ'l()
ﬁz(e) id —7T2()

A\ Operator can be expressed in NV(F) without belonging to F

A framework for comparing query languages in their ability to express boolean queries

Completion of F

Define F as the smallest superset of F so that:

if di € F, then all € F

ifall€ Fand — € F, thendi€ F

if —€ F, thennNeF

ifNeFandide Fand ("! € Foralle F), thenm € F
ifTcF, thent € F

if —-cFandm € F, then7m€ F

Example: {all, =} = {di,all,N, —, 7,7}

A framework for comparing query languages in their ability to express boolean queries

Expressiveness for path queries

Well established logic: A'(~1, —, di) corresponds to FO3 (Tarski & Givant)

Write F; < F; if every path query expressible in AV/(Fy) is also expressible
in N(Fg)

Theorem (Fletcher et al., 2011)

Let F1 and Fy be fragments. Then,

Fi < F ifand only if F; C F>

A framework for comparing query languages in their ability to express boolean queries

Theme 1 for navigational graph query fragments

Let F be a fragment of nonbasic features. We have:

FS C F=0 ifand only if — € F

F=0 C F#? if and only ifall € F and (— € F or7 € F)
F#Y C FS if and only ifall € F

FS C F# if and only ifall € F and — € F

©0 00

If and only if characterization of the proposition for general query
languages F

B>

A framework for comparing query languages in their ability to express boolean queries

Proof: positive results

Let F be a fragment of nonbasic features. We have:
Q@ FS C F=0 ifand only if — € F.
Q@ F"C F#0 ifand only ifall € F and (— € F or T € F or 7y € F).
© F7? C FS ifand only ifall € F.
Q@ FS C F# ifand only ifall € F and — € F.

Directly follows from the general results:
@ 2-cylindrification is expressed by all o g o all
@ 1-cylindrification is expressed by m(all o) and m2(q o all)
@ l-complementation is expressed by T

@ 2-complementation by all — @

A framework for comparing query languages in their ability to express boolean queries

Proof: negative results

Theorem

Let F be a fragment of nonbasic features. We have:
@ FEC F=" ifand only if — € F
Q@ F"C F#V ifand only ifall € F and (— € F orT € F orm € F)
© F7Y C FS ifand only ifall € F
Q@ FEC F* ifandonlyifall€ F and — € F

When all ¢ F

= follows from general results since N(F) is additive

When —, 71 and 7, are not in F

= follows from general results since N'(F) is monotone

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

@ Compare different query languages F1 and F, for fixed base
modalities, e.g.,]_-1g VS.]_—2g

A framework for comparing query languages in their ability to express boolean queries

For different query languages F1 and JF, we want to compare:

?

haaelvoal

Flc r?

-

2

N~ 1N

7

— Particularly interesting for query languages with several query features

We focus on the navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Theme 2: Nonemptiness and containment modalities

Already characterized in a larger project on the Algebra of Binary Relations

A feature g is called primitive for a modality M € {#0,=0, C} if for
every fragment F with g & F: {g}M ¢ FM

Theorem ([Fletcher et al., 2011, 2012, 2013])

The features di, w,7,N and — are primitive for nonemptiness.
Furthermore, for any fragment F:

o FA0 C F_ {—i—}?ﬁ@ iff F C {m,di,"} and |[| =1
o FACF-_ W iffleF,neF, NgF, T¢F
o FAPC F—{al}# iff F C {all,*} and || = 1

\

Theorem (Surinx et al., 2017)

Every operator is primitive for the containment modality

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

© Compare different query Ianguages JF1 and F> for different base
modalities, e.g., flg VS. .7-"27é

A framework for comparing query languages in their ability to express boolean queries

For particular languages Fi, F» and modalities M1, My in {#£0,=0,C}
we want to answer the following question:

?
fi/\/h C -FéM2

Just as in theme 2: particularly interesting for query languages with
several query features

We focus on navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

For nearly all comparisons, we can directly reduce to existing results

Let F; and F» be fragments.
Q@ F-C R iffFF CF5 and Fy = FyY
@ FEC Fy iff FE C FE and Fy = F7?
@ FPCrif i CFf? and Ff" = F?

We still have to consider:
?
=0 ~ gC
o FT"CF;

?
oFf‘éQ)ngg

A framework for comparing query languages in their ability to express boolean queries

Remaining comparisons

The comparison of emptiness to containment remains open

c c
@ Harder than F= vs F; since emptiness is a special form of
containment

The comparison of nonemptiness to containment also remains open

Let F1 and Fy be fragments. Then,

FP' c Fg it FP2 € F3P and F° € FE.

We prove that the conjecture holds for nearly all fragments

The open cases revolve around F; = {7} and F, C {di, %, *}

e Proving {m}#? ¢ {di,~!,*}< would completely prove the conjecture

A framework for comparing query languages in their ability to express boolean queries

An attempt to prove the open case

We focus on the union-free subfragment of A/(all, 1)

@ Denote this fragment with A

We reduce to the primitivity m under the nonemptiness modality:
o {7}7? only contains monotone Boolean queries
= Sufficient to look at the monotone sublanguage of AS
o Characterize the monotone sublanguage of AS as A#?
— We prove a preservation theorem for the more general (unsafe) CQs

A framework for comparing query languages in their ability to express boolean queries

Monotone preservation theorem for CQs

CQS N MON = CcQ#*

This theorem gives a syntactical query language for a semantical
sublanguage

Preservation style theorems like these are interesting in their own right

— Studied intensively in database theory, model theory and finite model
theory

A framework for comparing query languages in their ability to express boolean queries

Monotone preservation theorem for CQs

CQS N MON = CcQ#* \

Proof:
If @1 € @ is monotone:

= Q1 C Q@ = Ifree(Q1) Q1 C Ifree(Q2) Q2

= May assume that @Q; and @, are Boolean CQs

For Q1 C Q. where @1 and @, are Boolean CQs we have the following
trichotomy:

e Q1 € @ is nonmonotone, or
@ (1 € @ is the constant true query, or

e Q1 C @ is equivalent to Q5 # () where Q) equals Q> where some
conjuncts might be removed

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

@ Close a Boolean query family B under certain Boolean connectives
and compare it to B, e.g., F/S vs. FE

A framework for comparing query languages in their ability to express boolean queries

Theme 4: Closure properties

Comparing F7? to F=? amounts to investigating whether 77 is closed
under negation

We investigate closure under negation for the containment modality

Next, we generalize this idea and consider closure under conjunction

A framework for comparing query languages in their ability to express boolean queries

Closure under negation for the containment modality

For conjunctive queries the result is negative

Let F be CQ or UCQ. Then, F< is not closed under negation. \

For navigational graph query languages we show that we need a fragment
where all modalities coincide

Let F be a fragment. Then, F< is closed under negation iff — € F and
alle F.

A framework for comparing query languages in their ability to express boolean queries

Closure Under Conjunction

CQ?ﬁ@, UCQ#D and UCQ:Q) are trivially closed under conjunction

For CQ=" this changes drastically

CQr=" is closed under conjunction iff T contains at most two unary
relation names and no other n-ary relation names with n > 2

For the containment modality the result is even more strict

CQrE is closed under conjunction iff T contains at most one unary relation
names and no other n-ary relation names with n > 2

Whether UCQS is closed under conjunction remains open

A framework for comparing query languages in their ability to express boolean queries

Closure under conjunction for graph queries

Any fragment F=? is closed under conjunction since union is a basic
feature

For nonemptiness this changes drastically

Let F be a fragment. Then, FFé@ is closed under conjunction if and only if
o eitherall € F, or

e [[[=1and FC{}.

Examples:

o R340 AR?>Nid # 0 is equivalent with R3 o all o (R? Nid) # 0
o R20 (R £(PAR"URS3 # () is equivalent with R* # ()

A framework for comparing query languages in their ability to express boolean queries

Closure under conjunction for graph queries

For navigational fragments under containment we conjecture the following

Let F be a fragment. Then, F< is closed under conjunction iff — € F

We have been able to prove the conjecture for:
Q e CexNe3sCeisequivalentto e — e Ues — e =0
Q@ RZCRAR3Cidisnotin {di, ! T}
Q@ RCRAR3C{isnotin {n,m, 1T}

(2-3) are expressible using 7
For example: R> C R A R® C () is equivalent to R?> C R o7y(all o R3)

A framework for comparing query languages in their ability to express boolean queries

Our framework can be used as a guideline to investigate Boolean queries
in other contexts:

We can consider other query languages such as Codd’s relational algebra

We can consider other base modalities:

@ Barwise and Cooper consider the modality e; N e # () that
corresponds to the natural language construct “some e; are &)

@ The equality modality e; = e that is true on [iff e;(/) = ex(/)

/\ There are an infinitude of modalities one can consider. Base
modalities should thus be motivated by practical use.

It would be too large of a project to provide a complete picture for all
relevant Boolean query families

A framework for comparing query languages in their ability to express boolean queries

