
A framework for comparing query languages in their
ability to express boolean queries

Dimitri Surinx 1 Jan Van den Bussche 1 Dirk Van Gucht 2

1Hasselt University 2Indiana University

A framework for comparing query languages in their ability to express boolean queries

Database instances

A database schema Γ is a finite nonempty set of relation names

An instance I over Γ assigns to each relation name R of arity k, a finite
k-ary relation I (R) over a fixed universe of data elements

The active domain adom(I) of I is the set of data elements present in I

B We only consider instances with a nonempty active domain

Example:
Airports: Flights: Γ = {Airports, Flights}

id name

1 BRU

2 BUD

3 AMS

from to

1 2

2 1

1 3

3 1

adom(I) = {1, 2, 3,BRU,BUD,AMS}

A framework for comparing query languages in their ability to express boolean queries

Queries

Definition

A k-ary query over a database schema Γ is a function that maps instances
I over Γ to k-ary relations over adom(I)

B We require that queries are generic, i.e., Q(f (I)) = f (Q(I)) for any
permutation f of the universe

Examples:

Retrieve all city pairs that are two hops away from each other by plane

Retrieve all cities pairs that are connected by plane

A framework for comparing query languages in their ability to express boolean queries

Boolean queries

Not all questions for a database require relational output

Often only interested in yes/no answers

Definition

A Boolean query is a function that maps instance I over Γ to true or false

Examples:

Are there two cities that are not within 4 hops of each other?

Is the flight graph connected?

If there is a short flight between two cities, can we then travel
between the two cities by train?

A framework for comparing query languages in their ability to express boolean queries

Nonemptiness modality

Customary to express Boolean queries by testing nonemptiness of a query
from a certain query language F

→ Q 6= ∅ is true on an instance I if Q(I) 6= ∅ and false if Q(I) = ∅

Example:

“Are there airports with the same name” is expressed by the
nonemptiness of the query

“retrieve the different airport pairs that share the same name”

“Are there two airports that are not connected in two hops” is
expressed by the nonemptiness of the query

“retrieve the airport pairs that are not connected in two hops”

A framework for comparing query languages in their ability to express boolean queries

Emptiness modality

Testing emptiness of expressions to express Boolean queries

→ Q = ∅ is true on an instance I if Q(I) = ∅ and false if Q(I) 6= ∅

Examples:

The constraint “No two airports should have the same name” is
expressed by the emptiness of

“gather the different airports with the same name”

More generally, the FD A→ B on R(A,B) is expressed by the
emptiness of

(a, b1, b2)← R(a, b1) ∧ R(a, b2) ∧ b1 6= b2

A framework for comparing query languages in their ability to express boolean queries

Containment modality

Testing containment of one expression in another one to express Boolean
queries

→ Q1 ⊆ Q2 is true on an instance I if Q1(I) ⊆ Q2(I) and false if
Q1(I) 6⊆ Q2(I)

Example:

“If there is a short flight between two cities by plane, can we then
travel the same segment by train?” is expressed by

“retrieve the city pairs connected by direct short flights”
⊆ “retrieve the city pairs connected by train”

Inclusion dependencies

B Gives us the ability to express a wide array of queries using weak
languages

A framework for comparing query languages in their ability to express boolean queries

Boolean query families

We refer to nonemptiness, emptiness and containment as the base
modalities

For any query language F we introduce three Boolean query families

family of Boolean queries expressible in the form with

F=∅ q = ∅ q ∈ F
F 6=∅ q 6= ∅ q ∈ F
F⊆ q1 ⊆ q2 q1, q2 ∈ F

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

1 Compare the base modalities for fixed query languages F , e.g., F=∅

vs. F 6=∅

2 Compare different query languages F1 and F2 for fixed base
modalities, e.g., F⊆1 vs. F⊆2

3 Compare different query languages F1 and F2 for different base
modalities, e.g., F⊆1 vs. F 6=∅2

4 Close a Boolean query family B under certain Boolean connectives
and compare it to B, e.g., F∧⊆ vs. F⊆

Note: these comparisons are uninteresting for powerful languages like FO

A framework for comparing query languages in their ability to express boolean queries

Theme 1

For fixed languages F we want to compare:

F=∅ ?
⊆ F 6=∅ F 6=∅

?
⊆ F=∅

F⊆
?
⊆ F=∅ F=∅ ?

⊆ F⊆

F 6=∅
?
⊆ F⊆ F 6=∅

?
⊆ F⊆

General results:

We identify features that enable us to go from one modality to
another for fixed F
We identify properties that counter this ability

Applications:

CQs and UCQs

Navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Crucial features

We identify several different query features that enable us to go from one
modality to another:

Tests:

(q1 if q2)(I) =

{
q1(I) if q2(I) 6= ∅
∅ otherwise

k-ary Cylindrification:

γk(q)(I) =

{
adom(I)k if q(I) 6= ∅
∅ otherwise

k-ary Complementation:

qc(I) = adom(I)k − q(I)

A framework for comparing query languages in their ability to express boolean queries

Positive results

Proposition

Let F be a family of queries.

1 F⊆ ⊆ F=∅ if F is closed under set difference (−).

2 F=∅ ⊆ F 6=∅ if there exists k such that F is closed under

k-ary complementation, and
k-ary cylindrification.

3 F 6=∅ ⊆ F⊆ if

F contains a never-empty query p, and
F is closed under tests, or F is closed under k-ary cylindrification for
some k .

4 F=∅ ⊆ F⊆ if F contains the empty query

(2): Q = ∅ is equivalent to γk(Q)c 6= ∅
(3): Q 6= ∅ is equivalent to both p ⊆ (p if Q) and γk(p) ⊆ γk(Q)

A framework for comparing query languages in their ability to express boolean queries

Negative results

Ideally, we would also like to prove that these query features are actually
necessary

B Cannot expect this is possible since F can be very pathological

Approach to solve this issue:

Find general properties of F that prevent the sufficient conditions to
hold

→ We propose monotonicity and additivity

A framework for comparing query languages in their ability to express boolean queries

Monotonicity

A query Q is monotone if for any I and J we have Q(I) ⊆ Q(I ∪ J)

→ counters closure under complementation and set difference

Proposition

Let F be a family of monotone queries over a database schema Γ.

If F 6=∅ contains a non-constant query, then F 6=∅ 6⊆ F=∅.

If Γ contains two distinct relation names R and T of the same arity,
and the two queries R and T belong to F , then F⊆ 6⊆ F=∅.

If R is a binary relation name in Γ and the two queries R ◦ R and R
belong to F , then F⊆ 6⊆ F=∅.

Follows from: F=∅ is antimonotone, F 6=∅ is monotone and F⊆ is neither
monotone nor antimonotone

A framework for comparing query languages in their ability to express boolean queries

Additivity

A query Q is additive if for any two active domain disjoint instances I , J
we have Q(I ∪ J) = Q(I) ∪ Q(J)

→ counters closure under cylindrification and test

Proposition

Let F be a family of additive queries.

1 If F⊆ contains a non-constant query, then F⊆ 6⊆ F 6=∅.
2 If F 6=∅ contains a non-constant query, then F 6=∅ 6⊆ F⊆ and
F 6=∅ 6⊆ F=∅.

A framework for comparing query languages in their ability to express boolean queries

Theme 1

For fixed languages F we want to compare:

F=∅ ?
⊆ F 6=∅ F 6=∅

?
⊆ F=∅

F⊆
?
⊆ F=∅ F=∅ ?

⊆ F⊆

F 6=∅
?
⊆ F⊆ F 6=∅

?
⊆ F⊆

General results:

We identify features that enable us to go from one modality to
another for fixed F
We identify properties that counter this ability

Applications:

CQs and UCQs

Navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Application: CQs and UCQs

CQs are expressions of the form H(y) := ∃x R1 ∧ . . . ∧ Rn

UCQs are unions of conjunctive queries that have a matching output
schema

We have obtained the following:

CQ⊆

CQ=∅

CQ6=∅

UCQ⊆

UCQ=∅

UCQ6=∅

A framework for comparing query languages in their ability to express boolean queries

Application: CQs and UCQs

Nearly all comparisons follow from general results since:

Both languages are monotone

Both languages contain a never empty query, e.g, ∃x : x = x

Both are closed under tests since

(
⋃

i q1i if
⋃

j q2j) is equivalent to the expression
⋃

j

⋃
i q2j ∧ q′1i 6= ∅

where q′1i is a fully quantified version of q1i

CQ⊆

CQ=∅

CQ6=∅

UCQ⊆

UCQ=∅

UCQ6=∅

A framework for comparing query languages in their ability to express boolean queries

Application: Navigational graph query languages

Restriction where Γ only contains binary relation names

→ can view instances over Γ as graphs

Based on the Algebra of Binary Relations [Peirce, Schröder, Tarski]

Basic features:

id(G) = {(m,m) | m ∈ adom(G)}
R(G) = the edge relation G (R) (for R ∈ Γ)

∅(G) = ∅
e1 ◦ e2(G) = {(m, n) | ∃p : (m, p) ∈ e1(G) ∧ (p, n) ∈ e2(G)}
e1 ∪ e2(G) = e1(G) ∪ e2(G)

A framework for comparing query languages in their ability to express boolean queries

Nonbasic features

di(G) = {(m, n) | m, n ∈ adom(G) ∧m 6= n}
all(G) = {(m, n) | m, n ∈ adom(G)}

e−1(G) = {(m, n) | (n,m) ∈ e(G)}
e1 ∩ e2(G) = e1(G) ∩ e2(G)

e1 − e2(G) = e1(G)− e2(G)

π1(e)(G) = {(m,m) | ∃n : (m, n) ∈ e(G)} (provide tests)

π2(e)(G) = {(m,m) | ∃n : (n,m) ∈ e(G)}
π1(e)(G) = {(m,m) | ¬∃n : (m, n) ∈ e(G)} (provide negative tests)

π2(e)(G) = {(m,m) | ¬∃n : (n,m) ∈ e(G)}
e+(G) = the transitive closure of e(G)

A framework for comparing query languages in their ability to express boolean queries

Fragments & Path Queries

A fragment is a set of features:

Contains both projections or none of them

Contains both coprojections or none of them

The most basic fragment is the semiring {∅, id,∪, ◦}

Let NΓ(F) be the set of expressions built from relation names in Γ using
the features in the fragment F

⇒ Map instances of Γ (graphs) to binary relations (path query)

Instead of NΓ(F)6=∅, NΓ(F)=∅ and NΓ(F)⊆ we write FΓ
6=∅, FΓ

=∅ and FΓ
⊆

We will omit Γ when it is not important

A framework for comparing query languages in their ability to express boolean queries

Examples

Consider Hobbies(person,hname), Person(pname,age)

“Output the persons that share a hobby”

(Hobbies ◦ (Hobbies−1))− id

“Output the persons that do not have any hobbies”

π1(Hobbies) ◦ π1(Person)

A framework for comparing query languages in their ability to express boolean queries

Interdependencies between features

Some operators can be constructed with other operators:

all ≡ di ∪ id

di ≡ all− id

e1 ∩ e2 ≡ e1 − (e1 − e2)

π1(e) ≡ (e ◦ e−1) ∩ id ≡ (e ◦ all) ∩ id ≡ π1(π1(e)) ≡ π2(e−1)

π2(e) ≡ (e−1 ◦ e) ∩ id ≡ (all ◦ e) ∩ id ≡ π2(π2(e)) ≡ π1(e−1)

π1(e) ≡ id− π1(e)

π2(e) ≡ id− π2(e)

B Operator can be expressed in N (F) without belonging to F

A framework for comparing query languages in their ability to express boolean queries

Completion of F

Define F as the smallest superset of F so that:

if di ∈ F , then all ∈ F

if all ∈ F and − ∈ F , then di ∈ F

if − ∈ F , then ∩ ∈ F

if ∩ ∈ F and id ∈ F and (−1 ∈ F or all ∈ F), then π ∈ F

if π ∈ F , then π ∈ F

if − ∈ F and π ∈ F , then π ∈ F

Example: {all,−} = {di, all,∩,−, π, π}

A framework for comparing query languages in their ability to express boolean queries

Expressiveness for path queries

Well established logic: N (−1,−, di) corresponds to FO3 (Tarski & Givant)

Write F1 ≤ F2 if every path query expressible in N (F1) is also expressible
in N (F2)

Theorem (Fletcher et al., 2011)

Let F1 and F2 be fragments. Then,

F1 ≤ F2 if and only if F1 ⊆ F2

A framework for comparing query languages in their ability to express boolean queries

Theme 1 for navigational graph query fragments

Theorem

Let F be a fragment of nonbasic features. We have:

1 F⊆ ⊆ F=∅ if and only if − ∈ F

2 F=∅ ⊆ F 6=∅ if and only if all ∈ F and (− ∈ F or π ∈ F)

3 F 6=∅ ⊆ F⊆ if and only if all ∈ F

4 F⊆ ⊆ F 6=∅ if and only if all ∈ F and − ∈ F

B If and only if characterization of the proposition for general query
languages F

A framework for comparing query languages in their ability to express boolean queries

Proof: positive results

Theorem

Let F be a fragment of nonbasic features. We have:

1 F⊆ ⊆ F=∅ if and only if − ∈ F .

2 F=∅ ⊆ F 6=∅ if and only if all ∈ F and (− ∈ F or π1 ∈ F or π2 ∈ F).

3 F 6=∅ ⊆ F⊆ if and only if all ∈ F .

4 F⊆ ⊆ F 6=∅ if and only if all ∈ F and − ∈ F .

Directly follows from the general results:

2-cylindrification is expressed by all ◦ q ◦ all
1-cylindrification is expressed by π1(all ◦ q) and π2(q ◦ all)

1-complementation is expressed by π

2-complementation by all− Q

A framework for comparing query languages in their ability to express boolean queries

Proof: negative results

Theorem

Let F be a fragment of nonbasic features. We have:

1 F⊆ ⊆ F=∅ if and only if − ∈ F

2 F=∅ ⊆ F 6=∅ if and only if all ∈ F and (− ∈ F or π1 ∈ F or π2 ∈ F)

3 F 6=∅ ⊆ F⊆ if and only if all ∈ F

4 F⊆ ⊆ F 6=∅ if and only if all ∈ F and − ∈ F

When all 6∈ F

⇒ follows from general results since N (F) is additive

When −, π1 and π2 are not in F

⇒ follows from general results since N (F) is monotone

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

1 Compare the base modalities for fixed query languages F , e.g., F=∅

vs. F 6=∅

2 Compare different query languages F1 and F2 for fixed base
modalities, e.g., F⊆1 vs. F⊆2

3 Compare different query languages F1 and F2 for different base
modalities, e.g., F⊆1 vs. F 6=∅2

4 Close a Boolean query family B under certain Boolean connectives
and compare it to B, e.g., F∧⊆ vs. F⊆

A framework for comparing query languages in their ability to express boolean queries

Theme 2

For different query languages F1 and F2 we want to compare:

F 6=∅1

?
⊆ F 6=∅2

F=∅
1

?
⊆ F=∅

2

F⊆1
?
⊆ F⊆2

→ Particularly interesting for query languages with several query features

We focus on the navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Theme 2: Nonemptiness and containment modalities

Already characterized in a larger project on the Algebra of Binary Relations

A feature g is called primitive for a modality M∈ {6=∅,=∅,⊆} if for
every fragment F with g 6∈ F : {g}M 6⊆ FM

Theorem ([Fletcher et al., 2011, 2012, 2013])

The features di, π, π,∩ and − are primitive for nonemptiness.
Furthermore, for any fragment F :

F 6=∅ ⊆ F − {+}6=∅ iff F ⊆ {π, di,+} and |Γ| = 1

F 6=∅ ⊆ F − {−1}6=∅ iff −1 ∈ F , π ∈ F , ∩ 6∈ F , + 6∈ F

F 6=∅ ⊆ F − {all}6=∅ iff F ⊆ {all,+} and |Γ| = 1

Theorem (Surinx et al., 2017)

Every operator is primitive for the containment modality

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

1 Compare the base modalities for fixed query languages F , e.g., F=∅

vs. F 6=∅

2 Compare different query languages F1 and F2 for fixed base
modalities, e.g., F⊆1 vs. F⊆2

3 Compare different query languages F1 and F2 for different base
modalities, e.g., F⊆1 vs. F 6=∅2

4 Close a Boolean query family B under certain Boolean connectives
and compare it to B, e.g., F∧⊆ vs. F⊆

A framework for comparing query languages in their ability to express boolean queries

Theme 3

For particular languages F1,F2 and modalities M1,M2 in {6=∅,=∅,⊆}
we want to answer the following question:

FM1
1

?
⊆ FM2

2

Just as in theme 2: particularly interesting for query languages with
several query features

We focus on navigational graph query languages

A framework for comparing query languages in their ability to express boolean queries

Reductions

For nearly all comparisons, we can directly reduce to existing results

Theorem

Let F1 and F2 be fragments.

1 F⊆1 ⊆ F=∅
2 iff F⊆1 ⊆ F⊆2 and F⊆2 = F=∅

2

2 F⊆1 ⊆ F 6=∅2 iff F⊆1 ⊆ F⊆2 and F⊆2 = F 6=∅2

3 F 6=∅1 ⊆ F=∅
2 iff F 6=∅1 ⊆ F 6=∅2 and F 6=∅2 = F=∅

2

We still have to consider:

F=∅
1

?
⊆ F⊆2

F 6=∅1

?
⊆ F⊆2

A framework for comparing query languages in their ability to express boolean queries

Remaining comparisons

The comparison of emptiness to containment remains open

Harder than F⊆1 vs F⊆2 since emptiness is a special form of
containment

The comparison of nonemptiness to containment also remains open

Conjecture

Let F1 and F2 be fragments. Then,

F 6=∅1 ⊆ F⊆2 iff F 6=∅1 ⊆ F 6=∅2 and F 6=∅2 ⊆ F⊆2 .

We prove that the conjecture holds for nearly all fragments

The open cases revolve around F1 = {π} and F2 ⊆ {di,−1,+}
Proving {π} 6=∅ 6⊆ {di,−1,+}⊆ would completely prove the conjecture

A framework for comparing query languages in their ability to express boolean queries

An attempt to prove the open case

We focus on the union-free subfragment of N (all,−1)

Denote this fragment with A

We reduce to the primitivity π under the nonemptiness modality:

{π}6=∅ only contains monotone Boolean queries

⇒ Sufficient to look at the monotone sublanguage of A⊆

Characterize the monotone sublanguage of A⊆ as A 6=∅
→ We prove a preservation theorem for the more general (unsafe) CQs

A framework for comparing query languages in their ability to express boolean queries

Monotone preservation theorem for CQs

Theorem

CQ⊆ ∩MON = CQ6=∅

This theorem gives a syntactical query language for a semantical
sublanguage

Preservation style theorems like these are interesting in their own right

→ Studied intensively in database theory, model theory and finite model
theory

A framework for comparing query languages in their ability to express boolean queries

Monotone preservation theorem for CQs

Theorem

CQ⊆ ∩MON = CQ6=∅

Proof:
If Q1 ⊆ Q2 is monotone:

⇒ Q1 ⊆ Q2 ≡ ∃free(Q1)Q1 ⊆ ∃free(Q2)Q2

⇒ May assume that Q1 and Q2 are Boolean CQs

For Q1 ⊆ Q2 where Q1 and Q2 are Boolean CQs we have the following
trichotomy:

Q1 ⊆ Q2 is nonmonotone, or

Q1 ⊆ Q2 is the constant true query, or

Q1 ⊆ Q2 is equivalent to Q ′2 6= ∅ where Q ′2 equals Q2 where some
conjuncts might be removed

A framework for comparing query languages in their ability to express boolean queries

Framework to investigate Boolean queries

Four themes along which we can investigate Boolean queries:

1 Compare the base modalities for fixed query languages F , e.g., F=∅

vs. F 6=∅

2 Compare different query languages F1 and F2 for fixed base
modalities, e.g., F⊆1 vs. F⊆2

3 Compare different query languages F1 and F2 for different base
modalities, e.g., F⊆1 vs. F 6=∅2

4 Close a Boolean query family B under certain Boolean connectives
and compare it to B, e.g., F∧⊆ vs. F⊆

A framework for comparing query languages in their ability to express boolean queries

Theme 4: Closure properties

Comparing F 6=∅ to F=∅ amounts to investigating whether F 6=∅ is closed
under negation

We investigate closure under negation for the containment modality

Next, we generalize this idea and consider closure under conjunction

A framework for comparing query languages in their ability to express boolean queries

Closure under negation for the containment modality

For conjunctive queries the result is negative

Theorem

Let F be CQ or UCQ. Then, F⊆ is not closed under negation.

For navigational graph query languages we show that we need a fragment
where all modalities coincide

Theorem

Let F be a fragment. Then, F⊆ is closed under negation iff − ∈ F and
all ∈ F .

A framework for comparing query languages in their ability to express boolean queries

Closure Under Conjunction

CQ6=∅, UCQ 6=∅ and UCQ=∅ are trivially closed under conjunction

For CQ=∅ this changes drastically

Theorem

CQΓ
=∅ is closed under conjunction iff Γ contains at most two unary

relation names and no other n-ary relation names with n ≥ 2

For the containment modality the result is even more strict

Theorem

CQΓ
⊆ is closed under conjunction iff Γ contains at most one unary relation

names and no other n-ary relation names with n ≥ 2

Whether UCQ⊆ is closed under conjunction remains open

A framework for comparing query languages in their ability to express boolean queries

Closure under conjunction for graph queries

Any fragment F=∅ is closed under conjunction since union is a basic
feature

For nonemptiness this changes drastically

Theorem

Let F be a fragment. Then, F 6=∅Γ is closed under conjunction if and only if

either all ∈ F , or

|Γ| = 1 and F ⊆ {+}.

Examples:

R3 6= ∅ ∧ R2 ∩ id 6= ∅ is equivalent with R3 ◦ all ◦ (R2 ∩ id) 6= ∅
R2 ◦ (R2)+ 6= ∅ ∧ R7 ∪ R3 6= ∅ is equivalent with R4 6= ∅

A framework for comparing query languages in their ability to express boolean queries

Closure under conjunction for graph queries

For navigational fragments under containment we conjecture the following

Conjecture

Let F be a fragment. Then, F⊆ is closed under conjunction iff − ∈ F

We have been able to prove the conjecture for:

1 e1 ⊆ e2 ∧ e3 ⊆ e4 is equivalent to e1 − e2 ∪ e3 − e4 = ∅
2 R2 ⊆ R ∧ R3 ⊆ id is not in {di,−1,+}⊆

3 R2 ⊆ R ∧ R3 ⊆ ∅ is not in {∩, π,−1,+}⊆

(2-3) are expressible using π
For example: R2 ⊆ R ∧ R3 ⊆ ∅ is equivalent to R2 ⊆ R ◦ π1(all ◦ R3)

A framework for comparing query languages in their ability to express boolean queries

Future work

Our framework can be used as a guideline to investigate Boolean queries
in other contexts:

We can consider other query languages such as Codd’s relational algebra

We can consider other base modalities:

Barwise and Cooper consider the modality e1 ∩ e2 6= ∅ that
corresponds to the natural language construct “some e1 are e2”

The equality modality e1 = e2 that is true on I iff e1(I) = e2(I)

B There are an infinitude of modalities one can consider. Base
modalities should thus be motivated by practical use.

It would be too large of a project to provide a complete picture for all
relevant Boolean query families

A framework for comparing query languages in their ability to express boolean queries

